metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaguabis(guinoline-2-carboxylato- $\kappa^2 N.O$)magnesium(II) dihvdrate methanol disolvate

Xi-Shi Tai,^a* Jie Yin^a and Ming-Yang Hao^b

^aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bClinical College of Weifang Medical University, Weifang 261042, People's Republic of China Correspondence e-mail: taixishi@lzu.edu.cn

Received 23 May 2007; accepted 6 June 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.005 Å; R factor = 0.064; wR factor = 0.129; data-to-parameter ratio = 15.2.

the crystal structure of the title compound, In $[Mg(C_{10}H_6NO_2)_2(H_2O)_2]$ ·2H₂O·2CH₃OH, the Mg atom (site symmetry $\overline{1}$) adopts a slightly distorted *trans*-MgN₂O₄ octahedral geometry arising from two N,O-bidentate quinaldine ligands and two water molecules. The structure is stabilized by intermolecular O-H···O hydrogen bonds.

Related literature

For a related structure, see: Wang et al. (2007).

Experimental

Crystal data

 $[Mg(C_{10}H_6NO_2)_2(H_2O)_2]$ -- $2H_2O \cdot 2CH_4O$ $M_r = 504.77$ Triclinic, $P\overline{1}$ a = 7.129 (3) Å b = 9.038 (3) Å c = 10.846 (4) Å $\alpha = 75.677 \ (5)^{\circ}$

 $\beta = 74.138 \ (5)^{\circ}$ $\gamma = 70.160(5)^{\circ}$ V = 623.0 (4) Å³ Z = 1Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 291 (2) K $0.30\,\times\,0.26\,\times\,0.24$ mm

Data collection

5796 measured reflections
2445 independent reflections
1640 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.062$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	161 parameters
$wR(F^2) = 0.129$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
2445 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Mg1-O1	1.9913 (17)	Mg1-N1	2.267 (3)
Mg1-O3	2.081 (2)	-	

Table 2		
Hydrogen-bond geometry	(Å,	°).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.96	1.74	2.696 (3)	171
0.96	1.76	2.713 (3)	175
0.85	1.99	2.759 (3)	149
0.85	2.21	2.968 (3)	149
0.96	1.77	2.665 (3)	153
	<i>D</i> -H 0.96 0.96 0.85 0.85 0.96	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.96 & 1.74 \\ 0.96 & 1.76 \\ 0.85 & 1.99 \\ 0.85 & 2.21 \\ 0.96 & 1.77 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) -x + 2, -y, -z + 2; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y + 1, z - 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant No. 20671073), NingXia Natural Gas Transferring Key Laboratory (grant No. 2004007), and the Science and Technology Foundation of Weifang and Weifang University for a research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2431).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Wang, L.-H., Yin, J. & Tai, X.-S. (2007). Acta Cryst. E63, m1664.

Acta Cryst. (2007). E63, m1850 [doi:10.1107/S1600536807027687]

Diaquabis(quinoline-2-carboxylato- $\kappa^2 N, O$)magnesium(II) dihydrate methanol disolvate

X.-S. Tai, J. Yin and M.-Y. Hao

Comment

As part of our ongoing studies of the coordination chemistry of magnesium(II) (Tai *et al.*, 2007), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

In the molecule of (I), The Mg(II) center (site symmetry T) is six-coordinate with two O donor of H₂O, four O, N donor of two quinaldine anions (Table 1). Intermolecular O—H···O hydrogen bonds help to consolidate the crystal packing (Table 2).

Experimental

1 mmol of magnesium perchlorate was added to a solution of quinaldine acid (2 mmol) in 10 ml of 95% methanol. The mixture was stirred for 3 h at refluxing temperature and cooled. Clear blocks of (I) were obtained after one week as the solvents slowly evaporated.

Refinement

The H atoms were placed geometrically (C—H = 0.93—0.96 Å, O—H = 0.85–0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier}) \text{ or } 1.5U_{eq}(\text{methyl C}).$

Figures

Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).

Diaquabis(quinoline-2-carboxylato- $\kappa^2 N$,O)magnesium(II) dihydrate methanol disolvate

Crystal data	
$[Mg(C_{10}H_6NO_2)_2(H_2O)_2]\cdot 2H_2O\cdot 2CH_4O$	Z = 1
$M_r = 504.77$	$F_{000} = 266$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.344 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.129 (3) Å	Cell parameters from 318 reflections
b = 9.038 (3) Å	$\theta = 2.4 - 19.2^{\circ}$
c = 10.846 (4) Å	$\mu = 0.13 \text{ mm}^{-1}$

$\alpha = 75.677 (5)^{\circ}$
$\beta = 74.138 (5)^{\circ}$
$\gamma = 70.160 \ (5)^{\circ}$
$V = 623.0 (4) \text{ Å}^3$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2445 independent reflections
Radiation source: sealed tube	1640 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.062$
T = 291(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -8 \rightarrow 8$
$T_{\min} = 0.96, \ T_{\max} = 0.97$	$k = -10 \rightarrow 11$
5796 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H-atom parameters constrained
$wR(F^2) = 0.129$	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2 + 0.11P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2445 reflections	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$
161 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

T = 291 (2) K Block, colourless $0.30 \times 0.26 \times 0.24$ mm

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5400 (4)	0.3602 (3)	0.8444 (3)	0.0447 (6)

C2	0.3913 (5)	0.3680 (4)	0.7786 (3)	0.0512 (7)
H2	0.3326	0.2854	0.7970	0.061*
C3	0.3347 (4)	0.4995 (4)	0.6868 (3)	0.0482 (7)
H3	0.2357	0.5062	0.6432	0.058*
C4	0.4245 (4)	0.6259 (3)	0.6570 (3)	0.0440 (6)
H4	0.3873	0.7135	0.5931	0.053*
C5	0.5670 (4)	0.6163 (4)	0.7241 (3)	0.0470 (7)
Н5	0.6230	0.7001	0.7077	0.056*
C6	0.6292 (4)	0.4820 (4)	0.8172 (3)	0.0500 (7)
C7	0.7774 (4)	0.4703 (3)	0.8849 (3)	0.0456 (6)
H7	0.8385	0.5512	0.8680	0.055*
C8	0.8292 (4)	0.3384 (4)	0.9753 (3)	0.0482 (7)
H8	0.9266	0.3279	1.0215	0.058*
C9	0.7375 (4)	0.2212 (4)	0.9980 (3)	0.0472 (7)
C10	0.7840 (5)	0.0708 (3)	1.0976 (3)	0.0484 (7)
C11	0.9682 (5)	0.7515 (4)	0.4226 (3)	0.0585 (9)
H11A	1.0915	0.7807	0.4051	0.088*
H11B	0.9838	0.6788	0.3667	0.088*
H11C	0.9400	0.7010	0.5117	0.088*
Mg1	0.5000	0.0000	1.0000	0.0406 (3)
N1	0.5957 (4)	0.2269 (3)	0.9335 (2)	0.0507 (6)
01	0.7001 (3)	-0.0334 (2)	1.10861 (17)	0.0459 (5)
O2	0.9058 (3)	0.0623 (2)	1.16859 (17)	0.0451 (5)
O3	0.7270 (3)	-0.0998 (2)	0.85156 (18)	0.0528 (5)
H3A	0.8505	-0.0769	0.8482	0.063*
H3B	0.6846	-0.0546	0.7702	0.063*
O4	0.6256 (3)	0.0316 (2)	0.61644 (17)	0.0432 (5)
H4A	0.7206	-0.0108	0.5575	0.052*
H4B	0.5156	0.0148	0.6157	0.052*
O5	0.8078 (3)	0.8873 (2)	0.39970 (17)	0.0445 (5)
H5C	0.8589	0.9636	0.3320	0.053*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0443 (15)	0.0422 (16)	0.0441 (14)	0.0006 (13)	-0.0151 (12)	-0.0135 (11)
C2	0.0641 (19)	0.0474 (18)	0.0474 (15)	-0.0157 (15)	-0.0168 (14)	-0.0127 (13)
C3	0.0423 (15)	0.0540 (18)	0.0483 (14)	-0.0087 (14)	-0.0147 (12)	-0.0101 (13)
C4	0.0476 (15)	0.0444 (16)	0.0441 (13)	-0.0105 (13)	-0.0143 (12)	-0.0135 (12)
C5	0.0383 (14)	0.0620 (19)	0.0444 (14)	-0.0137 (14)	-0.0107 (12)	-0.0146 (13)
C6	0.0438 (15)	0.0514 (19)	0.0509 (15)	-0.0001 (14)	-0.0141 (13)	-0.0164 (13)
C7	0.0433 (15)	0.0423 (16)	0.0506 (15)	-0.0120 (13)	-0.0018 (12)	-0.0165 (12)
C8	0.0446 (15)	0.0575 (19)	0.0473 (14)	-0.0140 (14)	-0.0119 (12)	-0.0161 (13)
C9	0.0476 (15)	0.0444 (16)	0.0489 (15)	-0.0035 (13)	-0.0131 (13)	-0.0176 (12)
C10	0.0576 (17)	0.0386 (16)	0.0513 (15)	-0.0138 (14)	-0.0089 (14)	-0.0149 (12)
C11	0.0489 (17)	0.0486 (18)	0.0517 (16)	-0.0107 (14)	0.0080 (14)	0.0128 (13)
Mg1	0.0534 (8)	0.0355 (7)	0.0402 (6)	-0.0157 (6)	-0.0123 (6)	-0.0125 (5)
N1	0.0550 (14)	0.0517 (15)	0.0441 (12)	-0.0065 (12)	-0.0148 (11)	-0.0133 (11)

01	0.0280 (10)	0.0565(12)	0.0477 (10)	0.0126(0)	0.0126 (8)	0.0120 (0)	
01	0.0380(10)	0.0303(13) 0.0483(11)	0.0477(10) 0.0493(10)	-0.0130(9) -0.0215(9)	-0.0120(8)	-0.0129(9) -0.0242(8)	
02	0.0417(10)	0.0483(11) 0.0532(13)	0.0493(10)	-0.0213(0)	-0.0122(9)	-0.0142(8)	
04	0.0014(13) 0.0439(10)	0.0332(13) 0.0482(12)	0.0465(10)	-0.0193(9)	-0.0060(8)	-0.0142(9)	
05	0.0475(10)	0.0436(11)	0.0446 (10)	-0.0091(9)	-0.0108(8)	-0.0158(8)	
00	0.0170 (10)	0.0100 (11)	0.0110 (10)	0.0091 (9)	0.0100 (0)	0.0100 (0)	
Geometric param	neters (Å, °)						
C1—N1		1.361 (4)	C10—	-01	1.244 (3)		
C1—C6		1.384 (4)	C10—	C10—O2		1.283 (3)	
C1—C2		1.406 (4)	C10—Mg1		2.83	2.831 (3)	
C2—C3		1.370 (4)	C11—O5		1.38	1.389 (3)	
C2—H2		0.9300	C11—H11A		0.96	0.9600	
C3—C4		1.422 (4)	C11—H11B		0.9600		
С3—Н3		0.9300	C11—H11C		0.9600		
C4—C5		1.373 (4)	Mg1-	Mg1—O1		1.9913 (17)	
C4—H4		0.9300	Mg1-	–O1 ⁱ	1.9913 (17)		
C5—C6		1.401 (4)	Mg1-	–O3 ⁱ	2.08	1 (2)	
C5—H5		0.9300	Mg1-	-O3 2.081 (2)		1 (2)	
C6—C7		1.406 (4)	Mg1-	-N1	2.26	7 (3)	
С7—С8		1.357 (4)	Mg1-	–N1 ⁱ	2.26	7 (3)	
С7—Н7		0.9300	O3—I	H3A	0.96	00	
С8—С9		1.366 (4)	O3—I	H3B	0.96	00	
C8—H8		0.9300	04—I	H4A	0.85	00	
C9—N1		1.360 (4)	O4—I	H4B	0.85	00	
C9—C10		1.513 (4)	O5—I	H5C	0.95	99	
N1—C1—C6		121.5 (3)	С9—С	C10—Mg1	82.0	7 (17)	
N1—C1—C2		117.4 (3)	05—0	С11—Н11А	109.	5	
C6—C1—C2		121.1 (3)	05—0	С11—Н11В	109.	5	
C3—C2—C1		118.7 (3)	HIIA	—C11—H11B	109.	5	
C3—C2—H2		120.6	05-0	CII—HIIC	109.	5	
C1 - C2 - H2		120.6		-CII-HIIC	109.	5	
$C_2 = C_3 = C_4$		121.2 (5)			109.	0	
С2—С3—Н3		119.4		Mg1—O1	180.	0 7 (9)	
C4 - C3 - H3		119.4		$Mg1 = 03^{i}$	87.0 02.3	7(0)	
C5-C4-H4		120.6	01-	Mg1 = 03	92.3	3 (8)	
C3—C4—H4		120.6	01 ⁱ	Mg1 = 03	87.6	7 (8)	
C4—C5—C6		120.9 (3)	03^{i}	Mg1 = 03	180.	0	
C4—C5—H5		119.5	01—1	Mg1—N1	76.9	- 7 (8)	
С6—С5—Н5		119.5	01 ⁱ —	Mg1—N1	103.	03 (8)	
C1—C6—C5		119.2 (3)	O3 ⁱ —	Mg1—N1	90.7	0 (8)	
C1—C6—C7		119.6 (3)	O3—I	Mg1—N1	89.3	0 (8)	
C5—C6—C7		121.2 (3)	O1—1	Mg1—N1 ⁱ	103.	03 (8)	
C8—C7—C6		118.5 (3)	O1 ⁱ —	Mg1—N1 ⁱ	76.9	7 (8)	
С8—С7—Н7		120.7	O3 ⁱ —	Mg1—N1 ⁱ	89.3	0 (8)	

С6—С7—Н7	120.7	O3—Mg1—N1 ⁱ	90.70 (8)				
C7—C8—C9	119.6 (3)	N1—Mg1—N1 ⁱ	180.0				
С7—С8—Н8	120.2	C9—N1—C1	117.0 (3)				
С9—С8—Н8	120.2	C9—N1—Mg1	110.26 (18)				
N1—C9—C8	123.7 (3)	C1—N1—Mg1	132.7 (2)				
N1—C9—C10	112.9 (3)	C10—O1—Mg1	120.38 (19)				
C8—C9—C10	123.3 (3)	Mg1—O3—H3A	109.4				
O1—C10—O2	124.2 (3)	Mg1—O3—H3B	109.2				
O1—C10—C9	119.4 (3)	НЗА—ОЗ—НЗВ	109.5				
O2—C10—C9	116.4 (3)	H4A—O4—H4B	109.5				
O2—C10—Mg1	161.3 (2)	С11—О5—Н5С	109.1				
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$.							

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3A···O2 ⁱⁱ	0.96	1.74	2.696 (3)	171
O3—H3B…O4	0.96	1.76	2.713 (3)	175
O4—H4A···O5 ⁱⁱⁱ	0.85	1.99	2.759 (3)	149
O4—H4B···O5 ^{iv}	0.85	2.21	2.968 (3)	149
$O5$ — $H5C$ ··· $O2^{v}$	0.96	1.77	2.665 (3)	153

Symmetry codes: (ii) -*x*+2, -*y*, -*z*+2; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*, *y*+1, *z*-1.

Fig. 1

